近日,華中農業(yè)大學果蔬園藝作物種質創(chuàng)新與利用全國重點實驗室、湖北洪山實驗室劉繼紅教授課題組在The Plant Cell雜志上發(fā)表題為“The transcription factor TGA2 orchestrates salicylic acid signal to regulate cold-induced proline accumulation in Citrus”的研究論文,揭示了水楊酸通過TGA2-P5CS1/ICS1模塊調控脯氨酸積累參與柑橘耐寒性的機制。
柑橘是世界第一大類水果,也是我國南方最重要的果樹作物。柑橘喜溫畏寒,低溫脅迫嚴重制約了柑橘產業(yè)的綠色健康發(fā)展。枳(Citrus trifoliata L.)是重要的柑橘耐寒資源,為挖掘抗寒基因提供了珍貴材料。過去很多研究表明,植物在低溫脅迫下會積累脯氨酸減輕傷害,但低溫下脯氨酸積累的分子調控機制尚不明晰。
吡咯啉-5-羧酸合成酶(P5CS1,Delta-1-pyrroline-5-carboxylate synthetase 1)介導的脯氨酸生物合成在植物逆境響應中具有重要的保護作用。水楊酸受體NPR(NonEXPRESSOR OF PATHOGENESIS-RELATED GENES)和TGA(TGACG sequence-specific binding proteins)轉錄因子是水楊酸(salicylic acid,SA)信號通路的核心組分。課題組前期研究發(fā)現(xiàn),參與脯氨酸合成的基因CtrP5CS1受到低溫強烈的誘導表達。然而在低溫脅迫下脯氨酸的合成調控機制及上游信號通路仍知之甚少。
課題組以響應低溫CtrP5CS1啟動子片段的為誘餌開展酵母單雜交文庫篩選實驗,挖掘到一個bZIP家族轉錄因子CtrTGA2。通過Y1H、EMSA、ChIP-qPCR和LUC等實驗證明了CtrTGA2能特異性結合CtrP5CS1啟動子上的TGACG序列并激活該基因表達。隨后,通過轉基因實驗表明CtrTGA2通過調控CtrP5CS1表達和脯氨酸合成積累從而增強枳抗寒性。此外,CtrTGA2直接調控參與SA生物合成基因CtrICS1的表達,形成正反饋回路,增強CtrTGA2介導的CtrP5CS1的轉錄激活。研究人員進一步發(fā)現(xiàn)CtrTGA2受SA強烈誘導,發(fā)現(xiàn)CtrNPR3可以與CtrTGA2互作并減弱CtrTGA2對靶基因的激活,CtrNPR3負調控枳抗寒性,而外施SA可部分解除該抑制作用。
綜上,該研究表明TGA2-P5CS1/ICS1模塊通過整合SA信號調控脯氨酸合成參與柑橘低溫應答,解析了低溫脅迫下脯氨酸積累的分子機制,豐富了植物低溫逆境下代謝物調控網(wǎng)絡,為柑橘抗寒育種和研發(fā)緩解柑橘低溫傷害的技術提供了理論和實踐基礎。
華中農業(yè)大學園藝林學學院劉繼紅教授為該論文通訊作者,博士畢業(yè)生肖瑋為該論文第一作者,李春龍教授為本研究提供了指導和幫助。劉繼紅教授課題組長期致力于柑橘逆境應答與調控研究,重點關注脯氨酸、多胺和甜菜堿等代謝物在柑橘應答非生物脅迫的作用及調控機制。2024年,課題組有關研究成果已發(fā)表于Journal of Integrative Plant Biology(在讀博士生李夢迪)、Plant Physiology(已畢業(yè)博士生肖鵬)、Plant Journal(博士后Mahida Khan,已畢業(yè)博士生張楊)、Horticulture Research(已畢業(yè)博士生明如宏)等國際知名期刊,并在Plant Biotechnology Journal和Journal of Integrative Plant Biology發(fā)表了多胺方面的綜述文章。相關研究依托華中農業(yè)大學果蔬園藝作物種質創(chuàng)新與利用全國重點實驗室平臺,得到了國家重點研發(fā)計劃項目(2022YFD1200503)和國家自然科學基金(32272644, 32330095)等項目的資助。
【英文摘要】
Plants subjected to cold stress have been observed to accumulate proline, but the underlying regulatory mechanism remains to be elucidated. In this study, we identified a Pyrroline-5-Carboxylate Synthetase (P5CS)-encoding gene (CtrP5CS1) from trifoliate orange (Citrus trifoliata L.), a cold-hardy citrus species, as a critical gene for cold-induced proline accumulation. CtrTGA2 bound directly to the TGACG motif of the CtrP5CS1 promoter and activated its expression. Moreover, CtrTGA2 functioned positively in cold tolerance via modulation of proline synthesis by regulating CtrP5CS1 expression. Up-regulation of CtrP5CS1 and CtrTGA2 under cold stress was dependent on salicylic acid (SA) biosynthesis. CtrTGA2 directly regulated the expression of CtrICS1, a gene encoding isochorismate synthase (ICS) involved in SA biosynthesis, forming a positive feedback loop to intensify the CtrTGA2-mediated transcriptional activation of CtrP5CS1. The cold-induced SA receptor NonEXPRESSOR OF PATHOGENESIS-RELATED GENES3 (CtrNPR3) interacted with CtrTGA2 to inhibit its transcriptional activation activity; however, the inhibition was released by SA. Our results uncover the CtrTGA2-CtrP5CS1/CtrICS1 regulatory module that orchestrates the SA signal to regulate proline synthesis, giving important insights into the transcriptional mechanism underlying proline accumulation in plants under cold stress.
